Forum

If the limits lim_x...
 
Notifications
Clear all

If the limits lim_x → 0 sin^2(πcos^4 x)/x^4 is equal to

1 Posts
2 Users
0 Likes
316 Views
0
Topic starter

If the limits \(\lim\limits_{x \to 0}\) \(\frac{sin^2(\pi cos^4 x)}{x^4}\) is equal to

(1) π2

(2) 2π2

(3) 3π2

(4) 2π

1 Answer
0

Correct answer: (3) 4π2

Explanation:

\(\lim\limits_{x \to 0}\) \(\frac{sin^2(\pi cos^4 x)}{x^4}\)

\(\lim\limits_{x \to 0}\)\(\frac{1 - cos(2\pi cos^4 x)}{2x^4}\)

\(\lim\limits_{x \to 0}\)\(\frac{1 - cos(2\pi - 2\pi cos^4 x)}{[2 \pi (1 - cos^4 x)]^2}4 \pi^2\).\(\frac{sin^4x}{2x^4}\)(1 + cos2 x)2

= \(\frac{1}{2}4 \pi^2\).\(\frac{1}{2}(2)^2\)

= 4π2

Share:

How Can We Help?