Forum

Let z1 and z2 be tw...
 
Notifications
Clear all

Let z1 and z2 be two complex numbers such that arg (z1 – z2) = π/4 and z1, z2 satisfy the equation |z – 3| = Re(z).

1 Posts
2 Users
0 Likes
254 Views
0
Topic starter

Let z1 and z2 be two complex numbers such that arg (z1 – z2) = π/4 and z1, z2 satisfy the equation |z – 3| = Re(z). Then the imaginary part of z1 + z2 is equal to _________.

1 Answer
0

|z – 3| = Re(z)

let Z = x = iy

⇒ (x – 3)2 + y2 = x2

⇒ x2 + 9 – 6x + y2 = x2

⇒ y2 = 6x – 9 

⇒ y2 = 6\((x - \frac{3}{2})\)

⇒ z1 and z2 lie on the parabola mentioned in eq.(1) arg(z1 – z2) = \(\frac{\pi}{4}\)

⇒ Slope of PQ = 1.

Let P\(\Big(\frac{3}{2} + \frac{3}{2} t_1^2, 3t_1\Big)\) and Q\(\Big(\frac{3}{2} + \frac{3}{2} t_2^2, 3t_2\Big)\)

Slope of PQ = \(\frac{3(t_2 - t_1)}{\frac{3}{2}(t_2^1 - t_1^2)}\)

⇒ \(\frac{2}{t_2 + t_2}\) = 1

⇒  t2 + t1 = 2

Im(z1 + z2) = 3t1 +3t2 = 3(t1 +t2) = 3(2)

= 6.00

Share:

How Can We Help?