Forum

Let vector a and b ...
 
Notifications
Clear all

Let vector a and b be two vectors such that |vector 2a + 3b| = |vectors 3a + b| and the angle between

1 Posts
2 Users
0 Likes
247 Views
0
Topic starter

Let \(\vec{a}\) and \(\vec{b}\) be two vectors such that \(|2 \vec{a} + 3\vec{b}| = |3 \vec{a} + \vec{b}|\) and the angle between \(\vec{a}\) and \(\vec{b}\) is 60°. If \(\frac{1}{8}\vec{a}\) is a unit vector, then \(|\vec{b}|\) is equal to

(1) 4

(2) 6

(3) 5

(4) 8

1 Answer
0

Correct answer: (3) 5

Explanation:

\(|3 \vec{a} + \vec{b}|^2 = |2 \vec{a} + 3\vec{b}|^2\)

\((3 \vec{a} + \vec{b}).(3 \vec{a} + \vec{b})\) = \((2 \vec{a} + 3\vec{b}).(2 \vec{a} + 3\vec{b})\)

\(9\vec{a}. \vec{a} +6 \vec{a}.\vec{b} +\vec{b}. \vec{b}\) = \(4\vec{a}. \vec{a} +12 \vec{a}.\vec{b} +9\vec{b}. \vec{b}\)

\(5|\vec{a}|^2 -6 \vec{a}.\vec{b} = 8| \vec{b}|^2\)

5(8)2 - 6.8\(|\vec{b}|\)cos 60° = \(8|\vec{b}|^2\)

(∵ \(\frac{1}{8}|\vec{a}| = 1\)

⇒ \(|\vec{a}| = 8\))

40 - \(3|\vec{b}| = |\vec{b}|^2\)

⇒ \(|\vec{b}|^2 + 3|\vec{b}|-40\) = 0

\(|\vec{b}|\) = -8, \(|\vec{b}|\) = 5

Share:

How Can We Help?