Let vector a and b be two vectors such that |vector 2a + 3b| = |vectors 3a + b| and the angle between
Let \(\vec{a}\) and \(\vec{b}\) be two vectors such that \(|2 \vec{a} + 3\vec{b}| = |3 \vec{a} + \vec{b}|\) and the angle between \(\vec{a}\) and \(\vec{b}\) is 60°. If \(\frac{1}{8}\vec{a}\) is a unit vector, then \(|\vec{b}|\) is equal to
(1) 4
(2) 6
(3) 5
(4) 8
Correct answer: (3) 5
Explanation:
\(|3 \vec{a} + \vec{b}|^2 = |2 \vec{a} + 3\vec{b}|^2\)
\((3 \vec{a} + \vec{b}).(3 \vec{a} + \vec{b})\) = \((2 \vec{a} + 3\vec{b}).(2 \vec{a} + 3\vec{b})\)
\(9\vec{a}. \vec{a} +6 \vec{a}.\vec{b} +\vec{b}. \vec{b}\) = \(4\vec{a}. \vec{a} +12 \vec{a}.\vec{b} +9\vec{b}. \vec{b}\)
\(5|\vec{a}|^2 -6 \vec{a}.\vec{b} = 8| \vec{b}|^2\)
5(8)2 - 6.8\(|\vec{b}|\)cos 60° = \(8|\vec{b}|^2\)
(∵ \(\frac{1}{8}|\vec{a}| = 1\)
⇒ \(|\vec{a}| = 8\))
40 - \(3|\vec{b}| = |\vec{b}|^2\)
⇒ \(|\vec{b}|^2 + 3|\vec{b}|-40\) = 0
\(|\vec{b}|\) = -8, \(|\vec{b}|\) = 5
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 22 Online
- 12.4 K Members