Forum

Let [t] denote the ...
 
Notifications
Clear all

Let [t] denote the greatest integer ≤ t. Then the value of 8.

1 Posts
2 Users
0 Likes
377 Views
0
Topic starter

Let [t] denote the greatest integer ≤ t. Then the value of 8. \(\int_{-\frac{1}{2}}^1\)([2x]+ |x|) dx is .......

1 Answer
0

I = \(\int_{-\frac{1}{2}}^1\)([2x]+ |x|) dx

= \(\int_{-\frac{1}{2}}^1\)[2x]dx + \(\int_{-\frac{1}{2}}^1\)|x|dx

= 0 + \(\int_{-\frac{1}{2}}^1\)(-x)dx + \(\int_0^1\)x dx

= \(\Big(-\frac{x^2}{2}\Big)^0_{\frac{1}{2}}\) + \(\Big(\frac{x^2}{2}\Big)^1_0\)

= \(\Big(0 + \frac{1}{8}\Big) + \frac{1}{2}\)

= \(\frac{5}{8}\)

8I = 5

Share:

How Can We Help?