Loading [MathJax]/extensions/MathEvents.js

Forum

Let [t] denote the ...
 
Notifications
Clear all

Let [t] denote the greatest integer ≤ t. Then the value of 8.

1 Posts
2 Users
0 Likes
446 Views
0
Topic starter

Let [t] denote the greatest integer ≤ t. Then the value of 8. \int_{-\frac{1}{2}}^1([2x]+ |x|) dx is .......

1 Answer
0

I = \int_{-\frac{1}{2}}^1([2x]+ |x|) dx

= \int_{-\frac{1}{2}}^1[2x]dx + \int_{-\frac{1}{2}}^1|x|dx

= 0 + \int_{-\frac{1}{2}}^1(-x)dx + \int_0^1x dx

= \Big(-\frac{x^2}{2}\Big)^0_{\frac{1}{2}} + \Big(\frac{x^2}{2}\Big)^1_0

= \Big(0 + \frac{1}{8}\Big) + \frac{1}{2}

= \frac{5}{8}

8I = 5

Share:

How Can We Help?