Forum

Let S be the sum of...
 
Notifications
Clear all

Let S be the sum of all solutions (in radians) of the equation sin^4θ + cos^4θ – sinθ cosθ = 0 in [0, 4π]. Then 8S/π is equal to ..........

1 Posts
2 Users
0 Likes
453 Views
0
Topic starter

Let S be the sum of all solutions (in radians) of the equation sin4θ + cos4θ – sinθ cosθ = 0 in [0, 4π]. Then 8S/π is equal to ..........

1 Answer
0

We know that,

sin4θ + cos4θ – sinθ cosθ = 0

⇒ 1 - sin2θ cos2θ - sinθ cosθ = 0

⇒ 2 -(sin 2θ)2 - sin 2θ = 0

⇒ (sin 2θ)2 - (sin 2θ) - 2 = 0

⇒ (sin 2θ + 2) - (sin 2θ - 1) = 0

⇒ sin 2θ = 1 or sin 2θ = -2

⇒ 2θ = \(\frac{\pi}{2}, \frac{5\pi}{2}, \frac{9 \pi}{2}, \frac{13 \pi}{2}\)

⇒ θ = \(\frac{\pi}{4}, \frac{5\pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}\)

⇒ S = \(\frac{\pi}{4}+ \frac{5\pi}{4}+ \frac{9 \pi}{4}+ \frac{13 \pi}{4}\) = 7π

⇒ \(\frac{8S}{\pi}\) = \(\frac{8 \times 7 \pi}{\pi}\) = 56.00

This post was modified 3 years ago by admin
Share:

How Can We Help?