Forum

Let A(a, 0), B(b, 2...
 
Notifications
Clear all

Let A(a, 0), B(b, 2b +1) and C(0, b), b ≠ 0, |b| ≠ 1, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is

1 Posts
2 Users
0 Likes
224 Views
0
Topic starter

Let A(a, 0), B(b, 2b +1) and C(0, b), b ≠ 0, |b| ≠ 1, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is

(1) \(\frac{-2b}{b+1}\)

(2) \(\frac{2b}{b+1}\)

(3) \(\frac{2b^2}{b+1}\)

(4) \(\frac{-2b^2}{b+1}\)

1 Answer
0

Correct answer: (4) \(\frac{-2b^2}{b+1}\)

Explanation:

\(\frac{1}{2}\) \(\begin{vmatrix} a & 0 & 1 \\[0.3em] b & 2b+1 & 1 \\[0.3em] 0 & b & 1 \end{vmatrix}\) = 1

⇒ \(\begin{vmatrix} a & 0 & 1 \\[0.3em] b & 2b+1 & 1 \\[0.3em] 0 & b & 1 \end{vmatrix}\) = ±2

⇒ a (2b + 1 – b) – 0 + 1 (b2 – 0) = ± 2

⇒ a = \(\frac{\pm 2 - b^2}{b+1}\)

∴ a = \(\frac{2 - b^2}{b+1}\) and a = \(\frac{-2 - b^2}{b+1}\)

sum of possible values of 'a' is

= \(\frac{-2b^2}{b+1}\)

Share:

How Can We Help?