Forum

Let A = ([x+1] [x+2...
 
Notifications
Clear all

Let A = ([x+1] [x+2][x+3], [x] [x+3] [x+3], [x] [x+2] [x+4]), where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval

1 Posts
2 Users
0 Likes
173 Views
0
Topic starter

Let A = \(\begin{pmatrix} [x+1] & [x+2] & [x+3] \\[0.3em] [x] & [x+3] & [x+3] \\[0.3em] [x] & [x+2] & [x+4] \end{pmatrix}\), where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval:

(1) [68, 69)

(2) [62, 63)

(3) [65, 66)

(4) [60, 61)

1 Answer
0

Correct answer: (2) [62, 63)

Explanation:

\(\begin{vmatrix} [x+1] & [x+2] & [x+3] \\[0.3em] [x] & [x+3] & [x+3] \\[0.3em] [x] & [x+2] & [x+4] \end{vmatrix}\) = 192

R1 → R1 - R3 & R2 → R2 - R3

\(\begin{bmatrix}1 & 0 & -1 \\[0.3em] 0 & 1 & -1 \\[0.3em] [x] & [x]+2 & [x]+4 \end{bmatrix}\) = 62

2[x] + 6 + [x] = 192

⇒ [x] = 62

Share:

How Can We Help?