Forum

In a ∆ABC, if sin A...
 
Notifications
Clear all

In a ∆ABC, if sin A/sin B = sin(A-b)/sin(A-c) and a, b, c are the sides of the ∆ABC, then the correct relationship between a, b, c is ___.

1 Posts
2 Users
0 Likes
329 Views
0
Topic starter

In a ∆ABC, if sin A/sin B = sin(A-b)/sin(A-c) and a, b, c are the sides of the ∆ABC, then the correct relationship between a, b, c is ___.

(a) c2 (a2 + b2) = a2 (c2 - b2)

(b) a2 (b2 - c2) = b2 (a2 - c2)

(c) ac(a2 - c2) = b2 (a2 - b2)

(d) bc(a2 - c2) = a2 (b2 - c2)

1 Answer
0

Correct answer: (c) ac(a2 - c2) = b2 (a2 - b2)

Explanation:

\(\frac{sin\ A}{sin \ B}\) = \(\frac{sin(A -B)}{sin(A - C)}\)

⇒ \(\frac{a}{b}\) = \(\frac{sin A.cos\ B - cosA.sinB}{sinA.cosC - cosA.sinC}\)

⇒ \(\frac{a}{b}\) = \(\frac{a cos \ B - b. cos \ A}{a.cos \ C - c.cos \ A}\)

⇒ \(\frac{a}{b}\) = \(\frac{a.cos\ B-(c-acos\ B)}{acos\ C-(b-acos \ C)}\)

⇒ \(\frac{a}{b}\) = \(\frac{cos \ B(2a)-c}{cos \ C(2a)-b}\)

⇒ \(\frac{a}{b}\) = \(\frac{(\frac{c^2 + a^2 -b^2}{c})-c}{(\frac{b^2 + a^2 - c^2}{b})-b}\)

⇒ \(\frac{a}{b}\) = \(\frac{b(a^2 - b^2)}{c(a^2 - c^2)}\) 

⇒ ac(a2 - c2) = b2 (a2 - b2)

Share:

How Can We Help?