Forum

If (z + i)/(z + 2i)...
 
Notifications
Clear all

If (z + i)/(z + 2i) is purely real, then the locus of z is

1 Posts
2 Users
0 Likes
158 Views
0
Topic starter

If \(\frac{z+i}{z+2i}\) is purely real, then the locus of z is

(a) x - axis

(b) y - axis

(c) y = x

(d) y = \(\frac{x}{2}\)

1 Answer
0

Correct answer: (b) y - axis

Explanation:

\(\frac{z+i}{z+2i}\) is purely real, so \(\frac{z+i}{z+2i}\) = \(\Big(\overline{\frac{z+i}{z+2i}}\Big)\)

⇒ \(z \bar z\) - 2iz + \(i \bar z\) + 2 = \(z \bar z\) - iz + \(2i \bar z\) + 2

⇒ \(z(-i) + \bar z(-i)\) = 0

⇒ z = \(- \bar z\)

z is purely imaginary

Therefore, z lies on y - axis.

Share:

How Can We Help?