Forum

If y(x) = cot^-1 (√...
 
Notifications
Clear all

[Solved] If y(x) = cot^-1 (√1+sinx + √1-sinx/ √1+sinx - √1-sinx), x ∈ (π/2, π), then dy/dx at x = 5π/6 is

1 Posts
2 Users
2 Likes
249 Views
1
Topic starter

If y(x) = cot-1 \(\Big(\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx} - \sqrt{1-sinx}}\Big)\), x ∈ \(\Big(\frac{\pi}{2}, \pi\Big)\), then \(\frac{dy}{dx}\) at x = \(\frac{5 \pi}{6}\) is

(1) \(-\frac{1}{2}\)

(2) -1

(3) \(\frac{1}{2}\)

(4) 0

1 Answer
1

Correct answer: (1) \(-\frac{1}{2}\)

Explanation:

y(x) = cot-1\(\Big[\frac{cos \frac{x}{2} + sin \frac{x}{2}+sin \frac{x}{2} - cos \frac{x}{2}}{cos \frac{x}{2} + sin \frac{x}{2} - sin \frac{x}{2} + cos \frac{x}{2}}\Big]\)

y(x) = cot-1\(\Big(tan \frac{x}{2}\Big)\) = \(\frac{\pi}{2}\) - \(\frac{x}{2}\)

y'(x) = \(-\frac{1}{2}\)

Share:

How Can We Help?