Forum

If x^2 + y^2 + px +...
 
Notifications
Clear all

If x^2 + y^2 + px + y(1 - p) = 0 is the equation of circle, r ∈ (0,5], q = p^2 then number of integral values of (p, q) satisfy is

1 Posts
2 Users
0 Likes
221 Views
0
Topic starter

If x2 + y2 + px + y(1 - p) = 0 is the equation of circle, r ∈ (0,5], q = p2 then number of integral values of (p, q) satisfy is

(a) 16

(b) 14

(c) 19

(d) 21

1 Answer
0

Correct answer: (b) 14

Explanation:

Let S : x2 + y2 + px + y(1 - p) = 0

r = \(\sqrt{(\frac{p}{2})^2 + (\frac{1-p}{2})^2}\)

0 < \(\frac{p^2 + (1-p)^2}{4}\) ≤ 25

⇒ 0 < 2p2 + 1 - 2p ≤ 100

⇒ 0 < 2p2 - 2p + 1 ≤ 100

⇒ \(\frac{-1}{4}\) < \((p - \frac{1}{2})^2\) ≤ \(\frac{199}{4}\)

⇒ \((p - \frac{1}{2})^2\) ≤ \((\frac{\sqrt{199}}{2})^2\)

Total number of integral pairs of (p, q) = 14

Share:

How Can We Help?