Forum

If U(n) = (1 + 1^2/...
 
Notifications
Clear all

If U(n) = (1 + 1^2/n^2)(1+2^2/n^2)^2(1 + 3^2/n^2)^3......(1+n^2/n^2)^n, then find

1 Posts
2 Users
0 Likes
260 Views
0
Topic starter

If U(n) = (1 + \(\frac{1^2}{n^2}\)) \((1 +\frac{2^2}{n^2})^2\)\((1 +\frac{3^2}{n^2})^3\)......\((1 +\frac{n^2}{n^2})^n\), then find \(\lim\limits_{x \to \infty}[U(n)]^{\frac{-4}{n^2}}\) 

1 Answer
0

log (U(n)) = \(\sum_{r=1}^{n}\)log \((1 +\frac{r^2}{n^2})^r\)

= \(\sum_{r=1}^{n}\)log \((1 +\frac{r^2}{n^2})\)

U(n) = \(e^{\sum_{r=1}^{n}}\)r log \((1 +\frac{r^2}{n^2})\)

\(\Big[U(n)\Big]^{\frac{-4}{n^2}}\) = \(e^{\sum_{r=1}^{n}}\)r log \((1 +\frac{r^2}{n^2})\) x \(\frac{-4}{n^2}\)

= \(e^{\sum_{r=1}^{n}}\)r log\((1 +\frac{r^2}{n^2})\) x(-4)\(\frac{r}{n} \times \frac{1}{n}\)

= \(e^{-4 \int_0^1 x log(1+x^2)dx}\)

[Let 1 + x2 = t ⇒ 2xdx = dt]

= \(e^{\frac{-4}{2} \int_1^2 logtdt}\)

\(\Big[U(n)\Big]^{\frac{-4}{n^2}}\) = \(e^{-2(t\;ln\;t-t)_1^2}\)

= e-2[(2 ln 2-2)-(1 ln 1-1)]

= e-2[2 ln 2 - 1]

= e-4 ln 2+2

= \(\frac{e^2}{16}\)

Share:

How Can We Help?