Forum

If lim_x→∞(√(x^2 - ...
 
Notifications
Clear all

[Solved] If lim_x→∞(√(x^2 - x + 1) - ax) = b, then the ordered pair (a, b) is

1 Posts
2 Users
2 Likes
257 Views
1
Topic starter

If \(\lim\limits_{x \to \infty}\)\((\sqrt{x^2-x+1} - ax) = b \), then the ordered pair (a, b) is:

(1) \((1, \frac{1}{2})\)

(2) \((1, -\frac{1}{2})\)

(3) \((-1, \frac{1}{2})\)

(4) \((-1, -\frac{1}{2})\)

1 Answer
1

Correct answer: (2) \((1, -\frac{1}{2})\)

Explanation:

\(\lim\limits_{x \to \infty}\)\((\sqrt{x^2-x+1} - ax) = b \) (∞ - ∞)

⇒ a > 0

Now, \(\lim\limits_{x \to \infty}\)\(\frac{(x^2 - x + 1 - a^2x^2)}{\sqrt{x^2 - x + 1}+ax} \) = b

⇒ \(\lim\limits_{x \to \infty}\)\(\frac{(1 - a^2)x^2 - x + 1}{\sqrt{x^2 - x + 1}+ax} \) = b

⇒ \(\lim\limits_{x \to \infty}\)\(\frac{(1 - a^2)x^2 - x + 1}{x \Big(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}+a\Big)} \) = b

⇒ 1 - a2 = 0 ⇒ a = 1

Now, \(\lim\limits_{x \to \infty}\)\(\frac{-x+1}{x \Big(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}+a\Big)} \) = b

⇒ \(\frac{-1}{1+a}\) = b = \(-\frac{1}{2}\)

(a, b) = \((1, -\frac{1}{2})\)

Share:

How Can We Help?