[Solved] If lim_x→∞(√(x^2 - x + 1) - ax) = b, then the ordered pair (a, b) is
If \(\lim\limits_{x \to \infty}\)\((\sqrt{x^2-x+1} - ax) = b \), then the ordered pair (a, b) is:
(1) \((1, \frac{1}{2})\)
(2) \((1, -\frac{1}{2})\)
(3) \((-1, \frac{1}{2})\)
(4) \((-1, -\frac{1}{2})\)
Correct answer: (2) \((1, -\frac{1}{2})\)
Explanation:
\(\lim\limits_{x \to \infty}\)\((\sqrt{x^2-x+1} - ax) = b \) (∞ - ∞)
⇒ a > 0
Now, \(\lim\limits_{x \to \infty}\)\(\frac{(x^2 - x + 1 - a^2x^2)}{\sqrt{x^2 - x + 1}+ax} \) = b
⇒ \(\lim\limits_{x \to \infty}\)\(\frac{(1 - a^2)x^2 - x + 1}{\sqrt{x^2 - x + 1}+ax} \) = b
⇒ \(\lim\limits_{x \to \infty}\)\(\frac{(1 - a^2)x^2 - x + 1}{x \Big(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}+a\Big)} \) = b
⇒ 1 - a2 = 0 ⇒ a = 1
Now, \(\lim\limits_{x \to \infty}\)\(\frac{-x+1}{x \Big(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}+a\Big)} \) = b
⇒ \(\frac{-1}{1+a}\) = b = \(-\frac{1}{2}\)
(a, b) = \((1, -\frac{1}{2})\)
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 40 Online
- 12.4 K Members