Forum

If f(x) = cos[2tan^...
 
Notifications
Clear all

If f(x) = cos[2tan^-1(sin(cot^-1√(1-x)/x))]

1 Posts
2 Users
0 Likes
397 Views
0
Topic starter

If f(x) = cos[2tan-1(sin(cot-1\(\sqrt{\frac{1-x}{x}}\)))]

(a) f'(x)(x-1)2 - 2(f(x))2 = 0

(b) f'(x)(x-1)2 + 2(f(x))2 = 0

(c) f'(x)(x+1)2 + 2(f(x))2 = 0

(d) f'(x)(x+1)2 - 2(f(x))2 = 0

1 Answer
0

Correct answer: (c) f'(x)(x+1)2 + 2(f(x))2 = 0

Explanation:

f(x) = \(cos\Big[2tan^{-1}\Big( sin \Big( cot^{-1}\sqrt{\frac{1-x}{x}}\Big) \Big) \Big]\)

= cos (2tan-1√x)

= \(\Big(\frac{2}{1 + x}\Big)\) - 1

∴ f'(x) = \(\frac{-2}{(1 -x)^2}\)

⟹ f'(x)(x+1)2 = -2

This post was modified 4 years ago 6 times by Reyana09
Share:

How Can We Help?