Forum

If dy/dx = 2^x+y - ...
 
Notifications
Clear all

If dy/dx = 2^x+y - 2^x/2^y, y(0)= 1, then y(1) is equal to

1 Posts
2 Users
0 Likes
162 Views
0
Topic starter

If \(\frac{dy}{dx}\) = \(\frac{2^{x+y}-2^x}{2^y}\), y(0)= 1, then y(1) is equal to

(1) log2 (2 + e)

(2) log2 (1 + e)

(3) log2 (2e)

(4) log2 (1 + e2)

1 Answer
0

(2) log2 (1 + e)

Explanation:

\(\frac{dy}{dx}\) = \(\frac{2^x2^y - 2^x}{2^y}\)

\(2^y \frac{dy}{dx}\) = 2x(2y - 1)

\(\int \frac{2^y}{2^y - 1}\)dy = ∫2x dx

\(\frac{\ell n(2^y - 1)}{\ell n 2}\) = \(\frac{2^x}{\ell n2}\)+C

⇒ log2(2y - 1) = 2xlog2e + C

∵ y(0) = 1 ⇒ 0 = log2e + C

C = -log2e

⇒ log2e(2y - 1) = (2x - 1)log2e

Put x = 1, log2(2y - 1) = log2e

2y = e + 1

y = log2(e + 1)

Share:

How Can We Help?