Forum

If ar = cos 2rπ/9 +...
 
Notifications
Clear all

If ar = cos 2rπ/9 + i sin 2rπ/9, r = 1, 2, 3,...., i = √-1, then the determinant

1 Posts
2 Users
0 Likes
398 Views
0
Topic starter

If ar = cos \(\frac{2 r \pi}{9}\) + i sin \(\frac{2 r \pi}{9}\), r = 1, 2, 3,...., i = √-1, then the determinant \(\begin{vmatrix} a_1 & a_2 & a_3 \\[0.3em] a_4 & a_5 & a_6 \\[0.3em] a_7 & a_8 & a_9 \end{vmatrix}\) is equal to:

(1) a2a6 - a4a8

(2) a9

(3) a1a9 - a3a7

(4) a5

1 Answer
0

Correct answer: (3) a1a9 - a3a7

Explanation:

ar = \(e^{\frac{i 2\pi r}{9}}\), r = 1, 2, 3,...., a1, a2, a3,.... are in G.P.

\(\begin{vmatrix} a_1 & a_2 & a_3 \\[0.3em] a_4 & a_5 & a_6 \\[0.3em] a_7 & a_8 & a_9 \end{vmatrix}\) = \(\begin{vmatrix} a_1 & a_2^2 & a_1^3 \\[0.3em] a_1^4 & a_1^5 & a_1^6 \\[0.3em] a_1^7 & a_1^8 & a_1^9 \end{vmatrix}\)

= a17.a14.a17

\(\begin{vmatrix} 1 & a_1 & a_1^2 \\[0.3em] 1 & a_1 & a_1^2 \\[0.3em] 1 & a_1 & a_1^2 \end{vmatrix}\)

Now a1a9 - a3a7 = a110 - a110 = 0

Share:

How Can We Help?