If a = i + j + k, b = j - k, a x c = b, a.c = 3. Find [a, b, c]
Correct answer: (c) -2
Explanation:
\(\bar{a} = \hat{i}+ \hat{j}+ \hat{k}\), \(\bar{b} = \hat{j}- \hat{k}\)
Let \(\bar{c} = l\hat{i}+ m\hat{j} + n \bar{k}\)
\(\bar{b} \times \bar{c} = \bar{b}; \bar{a}.\bar{c}\) = 3
⟹ \((\bar{b} \times \bar{c})\times \bar{a}= \bar{b}\times\bar{a}\)
\((|\bar{a}|^2) \times \bar{c} -(\bar{a}. \bar{c})\bar{a}= \bar{b} \times \bar{a}\)
\(\bar{c} = \bar{a}+ \frac{1}{3} (\bar{b}\times \bar{a})\) ......(1)
∴ \(\bar{b} \times \bar{a}\) = \(\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\[0.3em]
0 & 1 & -1 \\[0.3em]
1 & 1 & 1
\end{vmatrix}\)
= \(2\hat{i}- \hat{j}- \hat{k}\)
∴ \(\bar{c} = (\hat{i}- \hat{j}- \hat{k})\) + \(\frac{1}{3}\) \((2\hat{i}- \hat{j}- \hat{k})\)
= \(\frac{5 \hat{i} + 2\hat{j} + 2\hat{k}}{3}\)
∴ \( \bar{a}.\bar{b}\;\bar{c}\) = \(\begin{vmatrix}
1 & 1 & 1 \\[0.3em]
0 & 1 & -1 \\[0.3em]
\frac{5}{3} & \frac{2}{3} & \frac{2}{3}
\end{vmatrix}\)
= \(\frac{-10}{3}\) + \(\frac{2}{3}\) + \(\frac{2}{3}\) = -2
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 125 Online
- 12.4 K Members