Forum

If a = i + j + k, b...
 
Notifications
Clear all

If a = i + j + k, b = j - k, a x c = b, a.c = 3. Find [a, b, c]

1 Posts
2 Users
0 Likes
154 Views
0
Topic starter

If a = \(\hat{i}+ \hat{j}+ \hat{k}\), b = \(\hat{j}- \hat{k}\), a x c = b, a.c = 3. Find [a, b, c]

(a) 2

(b) 6

(c) -2

(d) -6

This topic was modified 3 years ago by admin
1 Answer
0

Correct answer: (c) -2

Explanation:

\(\bar{a} = \hat{i}+ \hat{j}+ \hat{k}\), \(\bar{b} = \hat{j}- \hat{k}\)

Let \(\bar{c} = l\hat{i}+ m\hat{j} + n \bar{k}\)

\(\bar{b} \times \bar{c} = \bar{b}; \bar{a}.\bar{c}\) = 3

⟹ \((\bar{b} \times \bar{c})\times \bar{a}= \bar{b}\times\bar{a}\)

\((|\bar{a}|^2) \times \bar{c} -(\bar{a}. \bar{c})\bar{a}= \bar{b} \times \bar{a}\)

\(\bar{c} = \bar{a}+ \frac{1}{3} (\bar{b}\times \bar{a})\)   ......(1)

∴ \(\bar{b} \times \bar{a}\) = \(\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\[0.3em]
0 & 1 & -1 \\[0.3em]
1 & 1 & 1
\end{vmatrix}\)

= \(2\hat{i}- \hat{j}- \hat{k}\)

∴ \(\bar{c} = (\hat{i}- \hat{j}- \hat{k})\) + \(\frac{1}{3}\) \((2\hat{i}- \hat{j}- \hat{k})\)

= \(\frac{5 \hat{i} + 2\hat{j} + 2\hat{k}}{3}\)

∴ \( \bar{a}.\bar{b}\;\bar{c}\) = \(\begin{vmatrix}
1 & 1 & 1 \\[0.3em]
0 & 1 & -1 \\[0.3em]
\frac{5}{3} & \frac{2}{3} & \frac{2}{3}
\end{vmatrix}\)

= \(\frac{-10}{3}\) + \(\frac{2}{3}\) + \(\frac{2}{3}\) = -2

Share:

How Can We Help?