Forum

If 0 < x < 1 ...
 
Notifications
Clear all

If 0 < x < 1 and y = 1/2 x^2 + 2/3x^3 + 3/4x^4 +....., then the value of e^1+y at x = 1/2 is

1 Posts
2 Users
0 Likes
198 Views
0
Topic starter

If 0 < x < 1 and y = \(\frac{1}{2}\)x2 + \(\frac{2}{3}\)x3 + \(\frac{3}{4}\)x4 + ....., then the value of e1+y at x = \(\frac{1}{2}\) is

(1) \(\frac{1}{2}e^2\)

(2) 2e

(3) \(\frac{1}{2}\)

(4) 2e2

1 Answer
0

Correct answer: (1) \(\frac{1}{2}e^2\)

Explanation:

y = \(\Big(1 - \frac{1}{2}\Big)x^2\) + \(\Big(1 - \frac{1}{3}\Big)x^3\) + .....

= (x2 + x3 + x4 + ......) - \(\Big(\frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4}+....\Big)\)

= \(\frac{x^2}{1-x}\) + x - \(\Big(x - \frac{x^2}{2} + \frac{x^3}{3}+....\Big)\)

= \(\frac{x}{1-x}+\ell n(1 - x)\)

x = \(\frac{1}{2}\) ⇒ y = 1 - ℓn2

e1+y = e1+1-ℓn2

= e2-ℓn2

= \(\frac{e^2}{2}\)

Share:

How Can We Help?