Forum

If ∫(2e^x + 3e^-x)/...
 
Notifications
Clear all

If ∫(2e^x + 3e^-x)/(4e^x + 7e^-x)dx = 1/14 (ux + v loge(4e^x + 7e^-x) + C, where C is a constant of integration, then u + v is equal to...................

1 Posts
2 Users
0 Likes
435 Views
0
Topic starter

If \(\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}}dx\) = \(\frac{1}{14}\)(ux + v loge(4ex + 7e-x) + C, where C is a constant of integration, then u + v is equal to __________.

1 Answer
0

\(\int \frac{2e^x}{4e^x + 7e^{-x}}dx\) + 3\(\int \frac{e^x}{4e^x + 7e^{-x}}dx\)

= \(\int \frac{2e^{2x}}{4e^{2x} + 7}dx\) + 3\(\int \frac{e^{-2x}}{4 + 7e^{-2x}}dx\)dx

Let 4e2x + 7 = T 

8e2x dx = dT

2e2x dx = \(\frac{dT}{4}\)

Let 4 + 7e-2x = t

-14e-2x dx = dt

e-2x dx = -\(\frac{dt}{14}\)

\(\int \frac{dT}{4T} - \frac{3}{14} \int \frac{dt}{t}\)

= \(\frac{1}{4}\)log T - \(\frac{3}{14}\)log t + C

= \(\frac{1}{4}\) log (4e2x + 7) - \(\frac{3}{14}\)log (4 + 7e-2x) + C

= \(\frac{1}{14}\) [ \(\frac{1}{2}\)log(4ex+ 7e-x) + \(\frac{13}{2}x\) ] + C

u = \(\frac{13}{2}\), v = \(\frac{1}{2}\) ⇒ u + v = 7

Share:

How Can We Help?