If ∫(2e^x + 3e^-x)/(4e^x + 7e^-x)dx = 1/14 (ux + v loge(4e^x + 7e^-x) + C, where C is a constant of integration, then u + v is equal to...................
If \(\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}}dx\) = \(\frac{1}{14}\)(ux + v loge(4ex + 7e-x) + C, where C is a constant of integration, then u + v is equal to __________.
\(\int \frac{2e^x}{4e^x + 7e^{-x}}dx\) + 3\(\int \frac{e^x}{4e^x + 7e^{-x}}dx\)
= \(\int \frac{2e^{2x}}{4e^{2x} + 7}dx\) + 3\(\int \frac{e^{-2x}}{4 + 7e^{-2x}}dx\)dx
Let 4e2x + 7 = T
8e2x dx = dT
2e2x dx = \(\frac{dT}{4}\)
Let 4 + 7e-2x = t
-14e-2x dx = dt
e-2x dx = -\(\frac{dt}{14}\)
\(\int \frac{dT}{4T} - \frac{3}{14} \int \frac{dt}{t}\)
= \(\frac{1}{4}\)log T - \(\frac{3}{14}\)log t + C
= \(\frac{1}{4}\) log (4e2x + 7) - \(\frac{3}{14}\)log (4 + 7e-2x) + C
= \(\frac{1}{14}\) [ \(\frac{1}{2}\)log(4ex+ 7e-x) + \(\frac{13}{2}x\) ] + C
u = \(\frac{13}{2}\), v = \(\frac{1}{2}\) ⇒ u + v = 7
-
An electric instrument consists of two units. Each unit must function independently for the instrument to operate.
3 years ago
-
If (3^6/4^4)k is the term, independent of x, in the binomial expansion of
3 years ago
-
If x φ(x) = ∫_5^x (3t^2 - 2φ'(t))dt, x > -2, and φ(0) = 4, then φ(2) is ................
3 years ago
-
The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is
3 years ago
-
If the variable line 3x + 4y = a lies between the two circles (x – 1)^2 + (y – 1)^2 = 1 and (x – 9)^2 + (y – 1)^2 = 4, without intercepting a chord on either circle, then the sum of all the integral values of a is _________.
3 years ago
- 321 Forums
- 27.3 K Topics
- 53.8 K Posts
- 29 Online
- 12.4 K Members