Forum

If α, β are distinc...
 
Notifications
Clear all

[Solved] If α, β are distinct roots of x^2 + bx + c = 0 then find

1 Posts
2 Users
2 Likes
244 Views
1
Topic starter

If α, β are distinct roots of x2 + bx + c = 0 then find

\(\lim\limits_{x \to \beta}\frac{e^{2(x^2 +bx+c)}-1-2(x^2 +bx+c)}{(x-\beta)^2}\)

This topic was modified 3 years ago by admin
1 Answer
1

\(\lim\limits_{x \to \beta}\frac{e^{2(x^2 +bx+c)}-1-2(x^2 +bx+c)}{(x-\beta)^2}\)

= \(\lim\limits_{x \to \beta}\frac{e^{2(x-\alpha)(x - \beta)}-1-2(x-\alpha)(x-\beta)}{(x-\beta)^2(x-\alpha)^2}\) x (x - α)2

Let (x - α)(x - β) = y

then \(\lim\limits_{y \to 0}\frac{e^{2y}-1-2y}{y^2}\) x (β - α)2

Using L hospital rule,

= (β - α)2\(\lim\limits_{y \to 0}\frac{2e^{2y}-2}{2y}\)

= (β - α)2\(\lim\limits_{y \to 0}\frac{e^{2y}-1}{2y}\) x 2

This implies, 2(β - α)2 = 2(b2 - 4c)

Share:

How Can We Help?