Forum

Find y(π) if y(0) =...
 
Notifications
Clear all

Find y(π) if y(0) = 7 and dy/dx = 2(y - 2 sin x - 10)x + 2 cos x

1 Posts
2 Users
0 Likes
264 Views
0
Topic starter

Find y(π) if y(0) = 7 and dy/dx = 2(y - 2 sin x - 10)x + 2 cos x

1 Answer
0

\(\frac{dy}{dx}\) = 2(y - 2 sin x - 10)x + 2 cos x

\(\frac{dy}{dx}\) - 2 cos x = 2(y - 2 sin x - 10)x

\(\frac{d}{dx}\)( \(\frac{y -2 sin \ x - 10}{y -2\;sin \;x - 10}\)) = 2x

⇒ ∫d[/latex]( \(\frac{y -2 sin \ x - 10}{y -2\;sin \;x - 10}\)) = ∫2x dx

⇒ log |y - 2 sin x - 10| = x2 + C

At x = 0, y = 7

⇒ log |7 - 0 - 10| = 0 + C

⇒ C = log 3

At x = π

⇒ log |y - 2 sin π - 10| = π2 + log 3

⇒ log \(\frac{(y -10)}{2}\) = π2

⇒ y(π) = 3eπ2 + 10

Share:

How Can We Help?