Forum

A box open from top...
 
Notifications
Clear all

A box open from top is made from a rectangular sheet of dimension a × b by cutting squares each of side x from each of the four corners and folding up the flaps.

1 Posts
2 Users
0 Likes
242 Views
0
Topic starter

A box open from top is made from a rectangular sheet of dimension a × b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to

(1) \(\frac{a+b - \sqrt{a^2 + b^2 - ab}}{12}\)

(2) \(\frac{a+b - \sqrt{a^2 + b^2 + ab}}{6}\)

(3) \(\frac{a+b - \sqrt{a^2 + b^2 - ab}}{6}\)

(4) \(\frac{a+b - \sqrt{a^2 + b^2 - ab}}{6}\)

1 Answer
0

Correct answer: (3) \(\frac{a+b - \sqrt{a^2 + b^2 - ab}}{6}\)

Explanation:

V = ℓ. b. h = ( a – 2x) ( b – 2x) x

⇒ V(x) = (2x – a) ( 2x – b) x

⇒ V(x) = 4x3 – 2 ( a + b) x2 + abx

⇒ \(\frac{d}{dx}\)v(x) = 12x2 – 4 (a + b) x + ab

\(\frac{d}{dx}\)v(x) = 0 ⇒ 12x2 – 4 (a + b) x + ab = \(0<_{\beta}^{\alpha}\)

⇒ \(\frac{4(a+b) \pm \sqrt{16(a+b)^2 - 48ab}}{2(12)}\)

= \(\frac{(a+b) \pm \sqrt{a^2 + b^2 - ab}}{6}\)

Let x = α = \(\frac{(a+b) + \sqrt{a^2 + b^2 - ab}}{6}\)

β = \(\frac{(a+b) - \sqrt{a^2 + b^2 - ab}}{6}\)

Now, 12(x - α) (x - β) = 0

 figure.png

∴ x = β

= \(\frac{(a+b) - \sqrt{a^2 + b^2 - ab}}{b}\)

Share:

How Can We Help?