Forum

A TV tower stands v...
 
Notifications
Clear all

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°.

  

0
Topic starter

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° figure. Find the height of the tower and the width of the canal.

1 Answer
0

Given, AB is the height of the tower.

DC = 20 m (given)

As per given diagram, In right ΔABD,

tan 30° = AB/BD

1/√3 = AB/(20+BC)

AB = (20+BC)/√3 … (i)

Again,

In right ΔABC,

tan 60° = AB/BC

√3 = AB/BC

AB = √3 BC … (ii)

From equation (i) and (ii)

√3 BC = (20+BC)/√3

3 BC = 20 + BC

2 BC = 20

BC = 10

Putting the value of BC in equation (ii)

AB = 10√3

This implies, the height of the tower is 10√3 m and the width of the canal is 10 m.

Share:

How Can We Help?